Control Banding

Presentation in HKIOEH Conference 2007

> TW TSIN 14th April 2007

> > 1

Outline of presentation

- Background a scenario
- Concept of control banding
- Putting into operation
- Applications
- Looking forward

A scenario in workplace – metal degreasing by solvent

Making the risk assessment

- What is the material involved?
- How does the process work?
- Who are at risk?
- How frequent and exposed time?
- What is the exposure level? Exceeded OEL?
- What are the safe work practices?
- If the control for the tank satisfactory?
- If the ventilation adequate?
- If the PPE effective?

Exposure assessment

Air monitoring Vs Body Intake Model

Control of chemical hazards

- Air monitoring by occupational hygiene principle - anticipation, identification, evaluation (including monitoring) and control
- Evaluation of environmental conditions
- Review in exposure & health effect and decision in acceptable exposure level
 Code of Practice issued by Labour Department
 Recommendations of prevention and
- Recommendations of prevention and control measures

Issues SMEs facing

- Increased use of chemicals in varieties and widespread
- Insufficient knowledge and resources: Difficulty when without expertise
 - To assess the exposure of workers to chemical used
 - To set up the programme for proper preventive measures
 - To understand how to follow the law requirements

Control banding

- COSHH regulation since 1980s. Alternative risk assessment and management programme to satisfy the requirements COSHH essential of Health & Safety Executive, UK http://www.coshh-essentials.org.uk/ SME benefited from experience sharing in hazard identification, prevention and control
- Similar situation in USA

The toolkit

- International chemical control toolkit (ICCT) promoted by ILO by control banding concept
- Based on COSHH essential, HSE
- IOHA initiation and collaboration
- Simplified version in easy steps of assessment & putting into practice
 - Banding the control measures in 5 + 1 simple strategies
- Initiative of international co-operation

Basic Concept of ICCT

Shifting from exposure assessment to exposure control

The initiative

- The initiative of linking exposure scenario with prevention and control in the first instance
 - Banding of hazards, risk & control approaches

Why possible?

- Accumulated knowledge in toxicology and successful control of material concerned
- Basic information of material to users generally obtainable from suppliers, authorities and many other sources
 Control approaches are limited to only a few

The Hierarchy of control

- Elimination
- Substitution
- Modification
- Ventilation
- Containment
- Personal protection

Therefore, simple to learn and to apply

Reasons for use

- Easy toolkit Control orientated approach – readily available for field application
- Targeted to SMEs
- Reliable measures in simple step by step procedure
 - Most people with basic training in occupational hygiene/ chemical knowledge with hazard information can do

Reallocation of resources to higher priority

 Complimentary to air monitoring for chemicals with OEL, and suitable for substances without OEL as well

More comprehensive and practical than checklist approach

Benefits – Who & What?

- Employers knows what to do for law compliance
- Employees knows what and when need health protection when things go wrong
- Suppliers good practice and information to clients; limited liability
- Trade associations inform members and develop good practice
- Workers Unions trained & informed union members and representatives
- Professionals expert input to build up the database
- Law enforcer common benchmark for compliance

ICCT in operation

The five stages to solution

- Hazard classification
- Scale of use
- Ability to become airborne
- Finding the control approach
- Finding the general or task-specific control guidance sheet(s)

Making use of risk phrases for assessment

- Innate properties of chemicals grouping of chemicals with similar health effect into bands
 - Solution by similar effective prevention and control measures
- EU r-phrases (ICSC) or GHS
 - International recognised/ agreed database
 - e.g. Acetone : <u>11-36-66-67</u> and Trichloroethylene: <u>45-36/38-52/53-67</u> from ICSC

Important elements of ICSC

TRICHLOROETHYLENE				
RTECS No: KX4550000 Trichlord UN No: 1710 Ethylene EC No: 602-027-00-9 Acetylen C ₂ HCl ₃ / C	ichloroethylene bethene e trichloride ne trichloride CICH=CCl ₂ ar mass: 131.4			
	PACKAGING & LABELLING			
	T Symbol Do not transport with food and R: 45-38/38-52/53-67 feedstuffs. Marine pollutant. S: 53-45-61 UN Hazard Class: 6.1 UN Pack Group: III			
occupational exposure limits	SAFE STORAGE			
LV: 50 ppm as TWA; 100 ppm as STEL; A5; BEI issued; ACGIH 2004). IAK: Carcinogen category: 1; Germ cell mutagen group: 3B; DFG 2004).	Separated from metals (see Chemical Dangers), strong bases, food and feedstuffs. Dry. Keep in the dark. Ventilation along the floor.			

Hazard bands based on risk phases

Hazard Group	E	EU R-Phrases GHS hazard classificat (class/level)	
A	D	R48/23/24/25, R26/27/28, R39/26/27/28, R40 Carc. Cat. R60, R61, R62, R63, R64	3, Acute toxicity (lethality), any route, class 1 or 2 Carcinogenicity class 2 Repeated exposure toxicity, any route, class 1 Reproductive toxicity class 1 or 2
В С	E	R42, R45, R46, R49,R68	Mutagenicity class 1 or 2 Carcinogenicity class 1 Respiratory sensitisation
	S skin and eye contact	R21, R24, R27, R34, R35, R3 R38, R39/24, R39/27, R40/21 R43, R48/21, R48/24, R66	

Table 2: Hazard group allocation from classification definitions

Banding the hazards

 Classifying chemicals according to the r-phrases (numbers) and fit into the group

Substance	Hazard group	Volatility
Acetone	A & S	Medium
Butyl acetate	A & S	Medium
Diesel	B&S	Low
Ethyl acetate	A & S	Medium
Hexane	B&S	Medium
Isopropyl alcohol	A & S	Medium
Methanol	C&S	Medium
Methyl ethyl ketone	A & S	Medium
Methyl isobutyl ketone	B&S	Medium
Paraffin (Kerosene)	A & S	Low
Perchloroethylene	C&S	Medium
Petrol	B & S	High
Toluene	B & S	Medium
Trichloroethylene	C&S	Medium
White spirit (Mineral spirit)	B&S	Low
Xylene	A & S	Medium

Table 1: Hazard group identification for common solvents.

Airborne ability (simulating exposure)

Amount of use and emission rate is proportional to air pollution in workplaces Amount (scale) in use – in a batch or a period Classification by ml, litre, cubic meter & gram, kilo, tonne Volatility of solvent vapour (intrinsic emission), way of handling (dust exposure by operations)

Risk banding

Degree of risk – pending on results for the exposure & hazard band of the situation under

study

Amount used	Low dustiness or volatility	Medium volatility	Medium dustiness	High dustiness or volatility
Hazard group A				
Small	1	1	1	1
Medium	1	1	1	2
Large	1	1	2	2
		Hazard group	В	
Small	1	1	1	1
Medium	1	2	2	2
Large	1	2	3	3
		Hazard group	с	
Small	1	2	1	2
Medium	2	3	3	3
Large	2	4	4	4
Hazard group D				
Small	2	3	2	3
Medium	3	4	4	4
Large	3	4	4	4
Hazard group E				
For all hazard group E, substances, choose control approach 4				
Table 4: Control approach selection				

Control approaches

Consideration in 3dimensions : hazard bands, quantity in use & airborne ability (exposure) for determining effective means of control Control options based on specific operations Next consideration - skin and respiratory protection

Amount		Medium volatility	Medium	High dustiness	
used	volatility		dustiness	or volatility	
	Hazard group A				
Small	1	1	1	1	
Medium	1	1	1	2	
Large	1	1	2	2	
		Hazard group	В		
Small	1	1	1	1	
Medium	1	2	2	2	
Large	1	2	3	3	
		Hazard group	с		
Small	1	2	1	2	
Medium	2	3	3	3	
Large	2	4	4	4	
		Hazard group	D		
Small	2	3	2	3	
Medium	3	4	4	4	
Large	3	4	4	4	
Hazard group E					
	For all hazard group E, substances, choose control approach 4				
Table 4: C	Table 4: Control approach selection				

24

Control sheets

Task description			Task con	trol sheet		
	Contro	Approach 1				
General princip	les		<u>100</u>			
Sack, bottle and	d drum storage		<u>101</u>			
Bulk storage	IBC filling and emptyi	ng		<u>20</u>	8	
Removing wast	Drum filling			20	9	
U U	Drum emptying with			trol Approach 3		
General princip	Weighing solids	General principle	es		<u>300</u>	
Ventilated work	Mixing liquide with lic	Glove box		·.	301	-
	Mixing solids	Removing waste from extraction unit Transferring solids			<u>302</u> 303	-
Ventilated boot	Sieving	High throughput			304	\neg
				305	\neg	
С	Co	ontrol Appro	ach 4		306	
S General principles				<u>400</u>	<u>307</u>	
Suon emptying	Vapour degreasing k	ibo ming and ci			308	
Charging react	Tray drying oven		d emptying (solids	s)	<u>309</u>	
		Tanker filling and emptying (liquids)		<u>310</u>		
	Pelletising	Keg filling		<u>311</u>		
$\langle \langle \rangle$	Tablet press	Transferring liquid by pump		<u>312</u>		
		Filling small cont	tainers (packets a	and bottles)	<u>313</u>	
		Weighing solids using a load cell		<u>314</u>		
		Weiahina liauids	using a load cell		315	

Worked examples

Degreasing of metal ware

Potential problems

 Scenarios – metal degreasing in vapour degreaser
 Inhalation, skin contact hazard
 Contributing factors to higher exposure

 Diffusion, evaporation, drag out effect, displacement effect, condensation & vessel effect, spill/ leakage

Procedure for Risk assessment

- Use of trichloroethylene Check Tasks and Operations
 - Decide the Hazard band
 - Scale of use in a day/ batch
 - Degree of airborne ability (e.g. volatility)
 - Determine the risk band and control approaches
 - Check from tasks control sheets.

Results of analysis by ICCT

- TCE in degreasing (bp =87 C)
- C + S
- 60 litres/ day
- Medium use
- High volatility
- 60 times a day for 2 minutes
- CA3 Containment: see 300 and 318
 PPE requirement

 TCE in degreasing (bp =87 C)

- C + S
- 0.5 litre/ day
- Small use
- High volatility
- 6 times per day for 2 to 5 minutes
- CA2 local exhaust: see 200 and 218
- PPE requirement

Recommended applications in Hong Kong situation

SME daily operations

Simple and small scale operations

- Plants of large enterprises having normal production with commonly used chemicals
 - Known quantity of simple chemicals in routine operations and for validation
 - Focus on large scale industries and develop new measures for experience sharing

Compliance to the local regulations!?!

- Alternative to compliance in CoP of OEL
- The F&IU (Safety management) Regulation

Health hazard evaluation & control F&IU (SM) Regulation

- It a state of the state of t
- Item 6 of Part 1
 - A programme to identify hazardous exposure or the risk of such exposure to the workers and to provide suitable personal protective equipment as a last resort where engineering control methods are not feasible.

Elements in Part 3 - not yet in operation

Item 1 of Part 3

• Evaluation of job related hazards or potential hazards and development of safe work procedures.

Item 3 of Part 3

• A programme for accident control and elimination of hazards before exposing workers to any adverse work environment.

Item 4 of Part 3

• A programme to protect workers from occupational health hazards.

Present Position

 ICCT – the draft version developed under the concept of Control Banding is available on-line for practice

 <u>http://www.ilo.org/public/english/protection/sa</u> <u>fework</u>

Translation of concepts and common phrases of the toolkit to meet "local requirements"

Precautions in application

Scale of use in daily (continuous) operation/ batch

- Grams, kilo and ton for particulate
- ml, litres and cubic meters for vapour
- May not be sensitive to duration and frequency
- Airborne ability and condition
 - Liquid or solid
 - May not account for working temperature or energy at generating points, dispersion pattern, personal factors, etc.
- Complicated process or mixed exposure
 - Care in matching of risk phrases with the hazard bands
 - Care in selecting and implementing the measures
- Non-standard processes require new (full) risk assessment
 - Work condition, job activity and environmental factors
 - Air monitoring is required for validation

Looking forward

Planning for implementing Control **Banding/ICCT** Capacity Building (Training) Development and testing of guidance Translation into other languages Application of more generic approach Full implementation

Some technical issues

Field test of the existing version Effectiveness of predicting exposures Validation of controlling exposures Investigation of applications to skin exposure, and its effect when integrated with inhalation route of exposure Translation of the guidance into different languages: coordinated under WHO OH CC Final agreement in risk phrases – GHS

 Occupational hygiene input on expanding the knowledge in ranking hazards, prioritsing controls, etc.

 Modifications or additional model to suit local conditions/ practices

 Review and continuous improvement by Control Banding International Technical Group (ITG) coordinated by ILO/ WHO (under the IPCS cooperation)

New directions

Expansion of the concept in other areas of occupational safety and health

- Silica dust hazard,
- Asbestos hazard
- Ergonomics
- Noise control
- Safety
- Nanotechnology, etc.

Nanotechnology and control banding (after A Maynard 2005)

Exposure Management

Can Expert Control Banding be used?

Exposure Index

- 'Dustiness'
- Amount Used

Impact Index

- Bulk hazard
- Surface Area
- Surface Activity
- Shape
- Size

Control Approach

- General Ventilation
- Engineering Control
- Containment
- Specialist Advice

Thank you

Comment & suggestion for improvement; feedback from participants to ITG/ IPCS: via hkioeh@netvigator.com